
MANAGING INJURIES OF THE CENTRAL SLIP: THE HIGHS & LOWS OF CONSERVATIVE TREATMENT

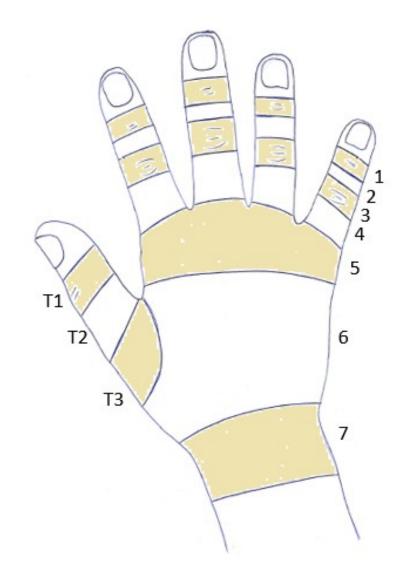
BAHT conference – Virtual Seminar 8th October 2020

Megan Blakeway & Annie Capon

Introduction

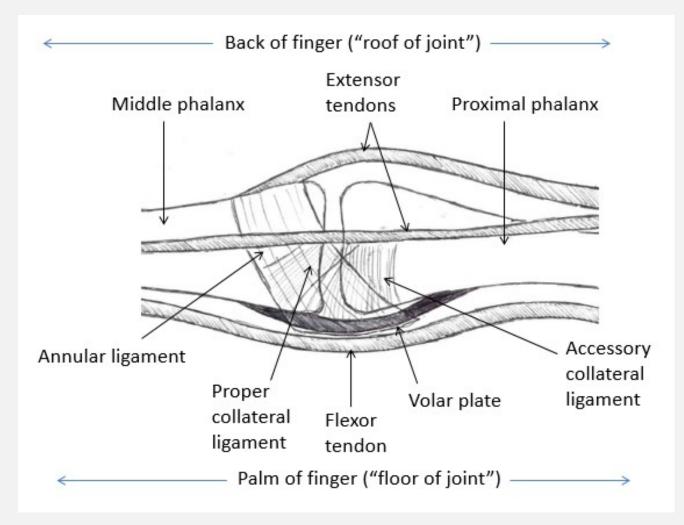
- Anatomy & biomechanics of the central slip
- Rehabilitation considerations
 - Assessment
 - Progression fracture vs tendinous
 - Complications
- Audit Review
 - Data collection
 - Outcomes
- Next steps and reflections
- References

Background

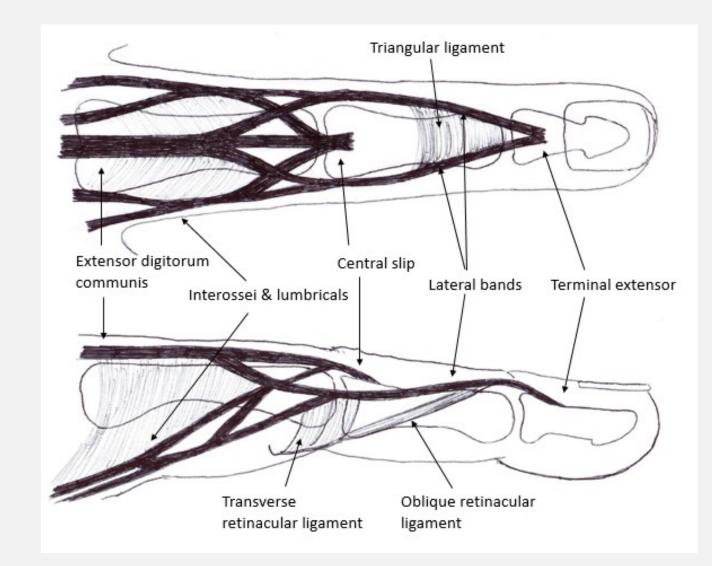

- Previous guidelines within the team were vague and with little information for managing complications.
- 12 patients reviewed retrospectively from 2015-16 4 fractures, 8 tendinous.
- Immobilisation period varied from 3 to 9 weeks followed by therapist choice of capener or weaning to night and protection.
- Average TAM = 115.5° (range 50-172°)
- Average PIPJ active flexion = 86.2° (range 56-100°)
- Average PIPJ extension deficit = 15.5° (range 0-64°)

What does the literature say?

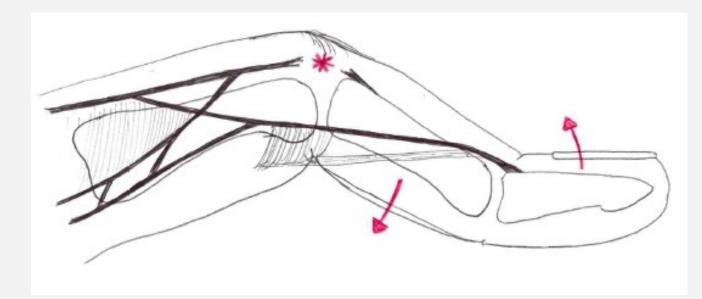
Article	Splint	Period of splint	Outcomes?
Evans 2010	Immobilise PIPJ -> SAM	3/52 then SAM	Average PIPJ ROM 6/92
Kiefhaber 1996	Immobilise PIPJ -> capener	4/52 -> 3/52+	Expert opinion
Chinchalker & Gan 2003	Immobilise PIPJ	Tendinous 6-8/52 Fractures 4-6/52	Expert opinion
Griffin et al 2012	Immobilise PIPJ	4-6/52	Expert opinion
Dy et al 2013	Immobilise PIPJ	4/52	Expert opinion
Lin & Strauch 2014	Immobilise PIPJ -> night splint	6/52 -> 4-6/52	Expert opinion
Grandizio & Klena 2017	Immobilise PIPJ -> night splint	4-6/52 -> 4/52	Expert opinion
Chauhan et al 2014	Immobilise PIPJ -> night splint	4/52 -> 4/52	Expert opinion
Lalonde et al 2015	Relative motion flexion splint	8/52	Expert opinion
Merritt 2014	Relative motion flexion splint	6/52	Expert opinion
Mitz 1989	Dynamic hand based extn splint	6/52	Expert opinion
Brodie & Tan 2014	Stack splint adjusted to PIPJ immob	4-6/52	Expert opinion


Anatomy – the extensors

- Thin & flat
- High tendon to bone ratio can cause great risk of adhesions after injury
- Zone III = central slip


Anatomy – the PIP joint

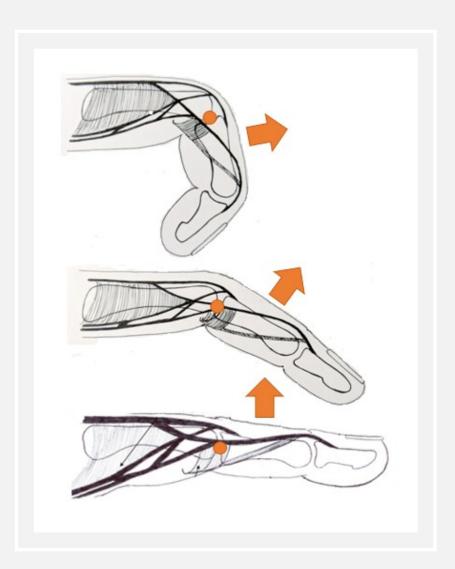
- Classified as a hinge joint
- Stability is created by an encasing "box" of soft tissue structures.

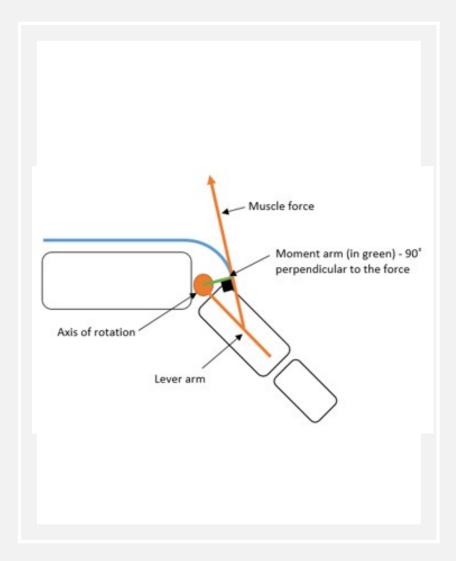

Anatomy – central slip

- Lies superficially to the dorsal PIPJ
- Lumbricals and interossei join CS prior to its insertion on the base of the middle phalanx.

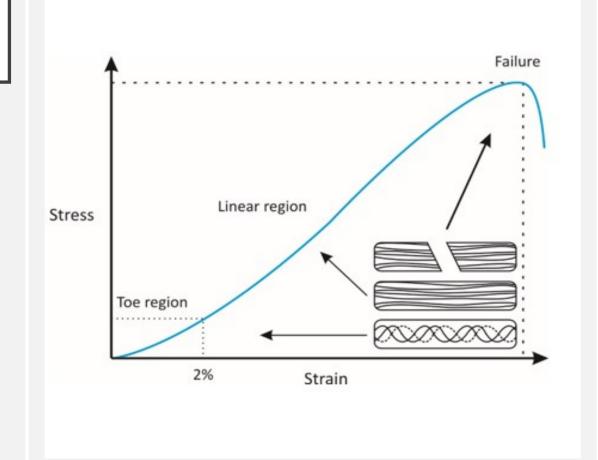
Anatomy – central slip injury

- Central slip ruptures
- Triangular ligament tears away from lateral bands
- Lateral bands migrate volarly (pulling PIPJ into flexion & DIPJ into hyper-extension)
- ORLs and TRLs tighten
- Intrinsics shorten and tighten, causing CS to migrate proximally
- Can result in a Boutonniere deformity in the longer term



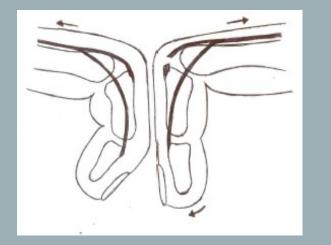

Biomechanics – PIPJ ROM

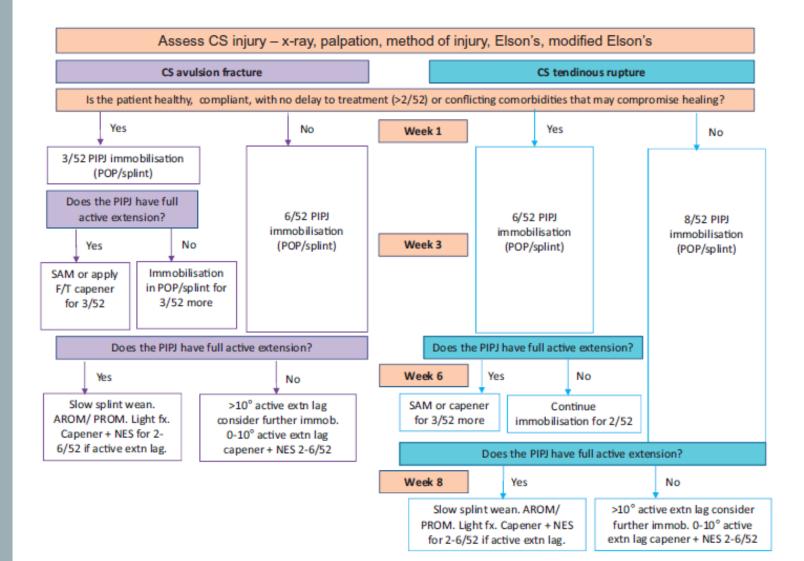
- Functional arc of movement at the PIPJ reported as 23/87° (Bain et al 1998)
- Flexion to extension
 - CS + intrinsics
 - Lateral bands
- Tenodesis effect:
 - Wrist and MCPJ flexion increases the passive/ resting tension within the extensors, therefore reducing the actual force required of the CS to extend the PIPJ



Biomechanics – tendon glide

- What is the ideal amount of tendon glide for the injured CS to prevent adhesions and facilitate healing?
- 3-5mm recommended for flexor tendon repairs
- In vivo radians/ moment arms
 - 28.65° PIPJ flexion would produce 3.75mm of CS glide (Evans & Thompson 1992)
- Cadaveric studies
 - 37.5-60° PIPJ flexion required for 3mm CS glide (0.5-08mm glide per 10° flexion) (Minamikawa et al 1992, Elliott & McGrouther 1986)


- Stress-strain curve before ultimate tendon failure.
- 45N tolerance in healthy extensor tendons during functional tasks (Fowler & Nicol 2000).
- CS failure tolerance reported as 57.6N (Qian et al 2014).



Biomechanics – tendon healing

- Intrinsic and extrinsic healing.
- Prolonged immobilisation can be detrimental to final quality of healing.
- Motion should be commenced as soon as safe to do so, due to the small amount of tendon glide available and high tendon-to-bone ratio.
- Encourages fibroblast movement and collagen production.

Updated clinical guidelines

Managing complications

- Extensor lag at PIPJ:
 - Additional period of immobilisation to shorten/ tighten CS if gapping is suspected.
 - Block DIPJ in slight flexion with a zimmer/ splint to increase the tension on the lateral bands causing them to move dorsally (and therefore further assisting PIPJ extension).
 - Use the power of the extrinsic EDC by blocking the MCPJs into flexion (Bouvier's manoeuvre)
- Limited flexion:
 - Massage over the CS insertion and along dorsal PI
 - Gentle passive flexion stretches
 - Resisted exercises

Method of data collection

- Implement new guidelines within the team
- Prospective data collection July 2017- July 2018
 - Inclusion:
 - >16y/o
 - Simple closed CS injury
 - Exclusion:
 - Surgical repair of CS
 - Complex injuries (e.g. concomitant fractures, ligament or tendon injuries, open)
- One drop out from non-attendance after initial appointment.
- **Outcome measures**: ROM & TAM, pain scale, RTW in weeks, injury to referral in days, number of appointments, treatment in weeks, complications.

Hand Therapy – Closed Central Slip and Central Slip Insertion injuries					
Patient Name:					
Hospital Number:					
Date of Birth:					
Injury Date:		Dat	e seen by hand ther	apist:	
Affected hand: R / L / both					
Dominant hand: R / L / ami	bidextrous				
Finger(s) Affected					
Initial Hand Therapy R/V			Date of discharge		

Initial Hand Therapy R/V	Date of discharge	
Face to face contacts		
Occupation (student/worker/retired)		
Return to work (in weeks)		

Outcome Measures

Range of Motion (at 12/52 post treatment or on discharge)

	Affected Hand		Unaffected Hand		TAM measures	
		AROM	PROM	AROM	PROM	(audit purposes only)
IF	MCP					
	PIP					
	DIP					
MF	MCP					
	PIP					
	DIP					
RF	MCP					
	PIP					
	DIP					
LF	MCP					
	PIP					
	DIP					

Data results

	Retrospective 2015-16 (n=12)	Prospective 2017-18 (n=22)
Injury to HT referral	26.25 days	7.04 days
Number of HT appts	8.6 appt	7.5 appts
HT treatment period	-	13.86 weeks
Pain scale on discharge	-	0.95/10
RTW	2.14 weeks	6 weeks

	Retrospective 2015-16 (n=12)	Prospective 2017-18 (n=22)
PIPJ extension deficit	15.5°	11.4°
PIPJ flexion	86°	86°
DIPJ flexion	48.7°	56°
TAM	115.5°	139°
Strickland-Glogovac	20% excellent 20% good 50% fair 10% poor	45.5% excellent 27% good 23% fair 0.5% poor

What has happened since?

- Recent literature review:
 - Two new articles
 - One case report: Johnson et al 2019
 - One systematic review of treatments: Geoghagan et al (2019)
- No immediate changes to current guidelines clarification/refinement of full document with help from our rotational staff relatively new to the hand therapy world.
- Planned to re-audit Feb-July 2020 but then Covid 19 happened!

Reflections

- Fractures have a better outcome than tendinous injuries
- Robust documentation is essential!
 - Use of a data collection proforma
- Additional outcome measures may have provided a broader narrative: Patient rated outcomes eg: qDASH
- Exploration of other treatment options:
 - Relative motion (flexion) splinting (Merrit, 2014)
 - How does this measure up to more 'traditional' treatment options?
 - Really only suitable for the two middle fingers
 - Duration of splint wear unknown
 - Functional requirements
- Do outcomes differ if a POP is used instead of a thermoplastic splint?

"Recipes tell you nothing. Learning techniques is the key." — Tom Colicchio

References I/6

- Amirtharajah & Lattanza (2015) Open Extensor Tendon Injuries. <u>The Journal of Hand Surgery</u>, 40(2), pp.391–397.
- An (2007) Tendon excursion and gliding: Clinical impacts from humble concepts. <u>Journal of Biomechanics</u>, 40(4), pp.713–718
- Bain et al (1998) Injuries of the proximal interphalangeal joint. <u>Hand Therapy</u>, 3(4), pp.9–12.
- Brand & Hollister (1999) <u>Clinical Biomechanics of the Hand</u> 3rd ed., St Louis, Missouri: Mosby.
- Brault (2000) Rehabilitation of extensor tendon injuries, <u>Operative techniques in plastic and reconstructive</u> <u>surgery</u>, 7(1), p25-30.
- Brodie & Tan (2014) The modified mallet splint for closed central slip injuries, <u>Annals of the Royal College of</u> <u>Surgeons</u>, 96, p 247-248.
- Chauhan (2014) Extensor tendon injuries in athletes, <u>Sports Medicine Arthroscopy Review</u>, 22, p45-55.
- Chinchalkar & Gan (2003) Management of proximal interphalangeal joint fractures and dislocations. Journal of Hand Therapy, 16(2), pp.117–128
- Clancy & Mass (2013) Current flexor and extensor tendon motion regimens: a summary. <u>Hand Clinics</u>, 29, pp.295– 309.

References 2/6

- Duran & Houser (1975) Controlled passive motion following flexor tendon repairs in zones 2 and 3. In <u>American</u> <u>Academy of Orthopedic Surgeons: Symposium on tendon surgery of the hand</u>. St Louis, Missouri: Mosby, pp. 105– 114.
- Dy et al (2013) Current methods and biomechanics of extensor tendon repairs. <u>Hand Clinics</u>, 29, pp.261–268.
- Elliott & McGrouther (1986) The excursions of the long extensor tendons of the hand. <u>Journal of Hand Surgery</u>, 11(1), pp.77–80.
- Elson (1986) Rupture of the central slip of the extensor hood of the finger: a test for early diagnosis, <u>Journal of</u> <u>Bone and Joint Surgery</u>, 68, p229-231.
- Evans (2010) Early active short arc motion for the closed central slip injury, Journal of Hand Therapy, 23, e15.
- Evans (2012) Managing the injured tendon: Current concepts. Journal of Hand Therapy, 25(2), pp.173–190
- Evans & Thompson (1992) An Analysis of Factors That Support Early Active Short Arc Motion of the Repaired Central Slip. Journal of Hand Therapy, 5(4), pp.187–201.

References 3/6

- Flemming (1998) The Anatomy of the Proximal Interphalangeal Joint and the Extensor Mechanism of the Finger. <u>Hand</u> <u>Therapy</u>, 3(4), pp.4–8.
- Fowler & Nichol (2000) Interphalangeal joint and tendon forces: Normal model and biomechanical consequences of surgical reconstruction. Journal of Biomechanics, 33(9), pp.1055–1062.
- Geoghagan et al (2019) Central slip extensor tendon injuries: a systematic review of treatments: <u>Journal of Hand</u> <u>Surgery</u>, 44(8), p825-832.
- Grandiozio & Klena (2017) Sagittal band, boutonniere and pulley injuries in the athlete, <u>Current Review of</u> <u>Musculoskeletal Medicine</u>, 10, p17-22.
- Griffin et al (2012) Management of extensor tendon injuries of the hand. <u>The Open Orthopaedics Journal</u>, 6(1), pp.36–42.
- Johnson et al (2019) A case report: Treatment of a zone III extensor tendon injury using a single relative motion with dorsal hood orthosis and a modified short arc motion protocol, <u>Journal of Hand Therapy</u>, p1-6.
- Kiefhaber (1996) Closed tendon injuries of the hand. <u>Operative Techniques in Sports Medicine</u>, 4(4), pp.227–2410

References 4/6

- Killian et al (2012) The role of mechanobiology in tendon healing. <u>Journal of Shoulder and Elbow Surgery</u>, 21(2), pp.228–237
- Knight (2015) Tendons Extensors. In I. Trail & A. Fleming, eds. <u>Disorders of the Hand. Volume 1: Hand Injuries</u>. London: Springer Verlag.
- Lalonde (2015) Managing boutonniere and swan-neck deformities, <u>BMC Proc</u>, 9, A50.
- Lin & Strauch (2014) Closed soft tissue extensor mechanism injuries (mallet, boutonniere and sagittal band), <u>Journal</u> of Hand Surgery, 39, p1005-1011.
- Matev (1966) The Boutonniere Deformity. <u>Hand</u>, 2(1), pp.90–95
- Matzon & Bozentka (2010) Extensor tendon injuries. In D. Green et al., eds. <u>The Journal of Hand Surgery</u>. Philadelphia: Churchill Livingstone, pp. 854–861.
- Matzon & Bozentka (2010) Extensor tendon injuries. <u>The Journal of Hand Surgery</u>, 35(5), pp.854–861.
- Merritt (2014) Relative motion splint: active motion after extensor tendon injury and repair, <u>Journal of Hand</u> <u>Surgery</u>, 39, p1187-1194.
- Minamikawa et al (1992) Wrist position and extensor tendon amplitude following repair. <u>Journal of Hand Surgery</u>, 17(2), pp.268–271.

References 5/6

- Mitz & Guelmi (1989) Functional treatment for closed boutonniere deformity by means of a dynamic dorsal digitopalmar splint, <u>Annals du Chirgerie de la Main</u>, 8, p246-251.
- Newport & Tucker (2005) New perspectives on extensor tendon repair and implications for rehabilitation. <u>Journal</u> of Hand Therapy, 18(2), pp.175–81.
- Owen & Watts (2014) (iii) Extensor tendon injuries. <u>Orthopaedics and Trauma</u>, 28(4), pp.214–218
- Pratt (2002) A prospective review of open central slip laceration repair and rehabilitation. <u>Journal of Hand Surgery</u>, 27(6), pp.530–534.
- Qian et al (2014) Mechanical properties vary for different regions of the finger extensor apparatus. <u>Journal of Biomechanics</u>, 47(12), pp.3094–3099.
- Rockwell et al. (2000) Extensor tendon: anatomy, injury and reconstruction. <u>Plastic Reconstructive Surgery</u>, 106(7), pp.1592–1604.
- Rosenthal & Elhassan (2011) The extensor tendons: Evaluation and surgical management. In T. Skirven et al., eds. <u>Rehabilitation of the Hand & Upper Extremity</u>. Philadelphia: Elsevier Mosby

References 6/6

- Rubin et al (1996) Diagnosis of closed central slip injuries: a cadaveric analysis of non-invasive tests, <u>Journal of Hand</u> <u>Surgery</u>, 21, p 614-616.
- Rust & Eckersley (2008) (iii) Twenty questions on tendon injuries in the hand. <u>Current Orthopaedics</u>, 22(1), pp.17–24.
- Schreuders et al (2006) A modification of Elson's test for the diagnosis of an acute extensor central slip injury, <u>British</u> <u>Journal of Hand Therapy</u>, 11, p111-113.
- Tubiana et al (1996) Examination of the Hand & Wrist, London: Martin Dunitz.
- Wang (2006) Mechanobiology of tendon. Journal of Biomechanics, 39(9), pp.1563–1582.
- Yu et al. (2004) Atlas of Hand Anatomy & Clinical Implications, St Louis, Missouri: Mosby